家彩网开户 - ios/安卓/手机版app下载
家彩网邀请码2023-01-31 16:05

家彩网开户

从收官日金牌到首日金牌,武大靖的1444天******

  中新网客户端北京2月5日电(记者 李赫)从2018年2月22日到2022年2月5日,时隔1444天,中国军团再迎冬奥金牌。

  对于开幕式后首日便顺利夺金的中国代表团来说,这样的等待并不漫长。

  因为4年前在平昌,这份等待经过了13个比赛日,才在短道速滑收官日当天收到回应。

武大靖冲线瞬间。武大靖冲线瞬间。

  从中国代表团平昌冬奥“首金”,到中国代表团北京冬奥“首金”,时隔1444天,武大靖再登冬奥最高领奖台。

  对于领军出征的武大靖来说,这份坚守并不容易,它意味着超过47个月的孜孜以求。更何况滑向北京冬奥的四年,武大靖的旅程并不平坦。

  在2018年平昌冬奥会上以无可撼动的优势夺得男子500米冠军之后,武大靖成为中国短道速滑队的核心。而世界赛场上,他在男子500米短道速滑的冰面上也一度所向披靡。

2021年11月27日,荷兰多德雷赫特,21/22短道速滑世界杯上,武大靖在比赛中。图片来源:视觉中国2021年11月27日,荷兰多德雷赫特,21/22短道速滑世界杯上,武大靖在比赛中。图片来源:视觉中国

  在同年底进行的卡尔加里和盐湖城世界杯赛中,武大靖不仅在男子500米项目上一骑绝尘,还在一年当中第三次打破世界纪录,风光一时无两。

  然而在那之后,武大靖的状态有所波动。进入本赛季,武大靖的稳定性仍令人捏把汗。本赛季短道速滑世界杯,武大靖在北京站决赛中抢跑出局,在日本站未能晋级半决赛,在匈牙利站决赛中被碰倒后仅获第四,直至荷兰收官站才收获赛季个人首冠。

  北京冬奥临近,武大靖在“慢热”的状态里与自己较劲,竞争者们却迅速成长。

2018年2月23日,冬奥会短道速滑男子5000米接力奖牌颁奖仪式在韩国平昌举行。匈牙利在华裔兄弟刘少林、刘少昂的带领下在项目上夺得金牌,中国摘银,加拿大获得铜牌。图为匈牙利运动员跳上领奖台。中新社记者 崔楠 摄2018年2月23日,冬奥会短道速滑男子5000米接力奖牌颁奖仪式在韩国平昌举行。匈牙利在华裔兄弟刘少林、刘少昂的带领下在项目上夺得金牌,中国摘银,加拿大获得铜牌。图为匈牙利运动员跳上领奖台。中新社记者 崔楠 摄

  武大靖身边,队友任子威状态正佳,匈牙利的刘少林、刘少昂兄弟实力愈发强劲。在平昌为匈牙利历史性地拿到冬奥会金牌后,他们更希望在单项上有所突破。本赛季世界杯匈牙利站男子500米决赛,刘少林、刘少昂兄弟便战胜武大靖、任子威包揽了冠亚军。

  不仅如此,疫情的“搅局”、主场作战的压力、作为本届中国代表团唯一一位奥运冠军所背负的期许,这些都让武大靖一路走来的每一步显得更加沉重。

  面对这些困难,武大靖咬牙顶住。

2月23日,平昌冬奥会短道速滑男子500米奖牌颁奖仪式在韩国平昌举行,中国选手武大靖在该项目上夺得金牌,这也是中国代表团在平昌冬奥会上的首枚金牌。图为武大靖在获颁金牌后手指胸前五星红旗。中新社记者 崔楠 摄资料图:2018年2月23日,平昌冬奥会短道速滑男子500米奖牌颁奖仪式在韩国平昌举行,中国选手武大靖在该项目上夺得金牌,这也是中国代表团在平昌冬奥会上的首枚金牌。图为武大靖在获颁金牌后手指胸前五星红旗。中新社记者 崔楠 摄

  “我会加强训练,把自己最好的状态呈现在北京冬奥会。”

  几天前,中国短道速滑队进行了虎年首练。这场训练,中国队正是围绕接力展开,加强了交接棒配合。

  “今天以适应冰场为主,团队在接力项目很有竞争力。我们全力以赴,给中国代表团打个样。”武大靖再次坚定表态。

  正是这份坚毅陪伴着武大靖一路走来,从女队陪练成为奥运冠军,在奥运冠军的位置上收获又一枚奥运金牌。

当地时间2月23日,2018平昌冬奥会短道速滑男子500米颁奖仪式在平昌奥运村举行,夺得金牌的中国选手武大靖登台领奖。当地时间2月23日,2018平昌冬奥会短道速滑男子500米颁奖仪式在平昌奥运村举行,夺得金牌的中国选手武大靖登台领奖。

  也是这份坚毅支撑着武大靖走过平昌“首金”后的1444天。终于,武大靖和他的队友们一起,让中国代表团的“首金”,不再需要漫长的等待。

  北京冬奥会赛程还长。武大靖和他领衔的中国短道速滑队,有机会让这份坚守兑现更多。(完)

科学家成功合成铹的第14个同位素******

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。

  近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。

  此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。

  不断进行探索,再次合成铹同位素

  铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。

  质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。

  103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。

  截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。

  目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。

  通过熔合反应,形成新的原子核

  铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。

  “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。

  在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。

  “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  拓展新的领域,推动超重核理论研究

  由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。

  此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。

  研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。

  “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)

中国网客户端

国家重点新闻网站,9语种权威发布

家彩网地图